Multimodal voice conversion based on non-negative matrix factorization
نویسندگان
چکیده
منابع مشابه
Multimodal voice conversion based on non-negative matrix factorization
A multimodal voice conversion (VC) method for noisy environments is proposed. In our previous non-negative matrix factorization (NMF)-based VC method, source and target exemplars are extracted from parallel training data, in which the same texts are uttered by the source and target speakers. The input source signal is then decomposed into source exemplars, noise exemplars, and their weights. Th...
متن کاملNoise-Robust Voice Conversion Based on Sparse Spectral Mapping Using Non-negative Matrix Factorization
This paper presents a voice conversion (VC) technique for noisy environments based on a sparse representation of speech. Sparse representation-based VC using Non-negative matrix factorization (NMF) is employed for noise-added spectral conversion between different speakers. In our previous exemplar-based VC method, source exemplars and target exemplars are extracted from parallel training data, ...
متن کاملMany-to-many voice conversion based on multiple non-negative matrix factorization
We present in this paper an exemplar-based Voice Conversion (VC) method using Non-negative Matrix Factorization (NMF), which is different from conventional statistical VC. NMF-based VC has advantages of noise robustness and naturalness of converted voice compared to Gaussian Mixture Model (GMM)based VC. However, because NMF-based VC is based on parallel training data of source and target speake...
متن کاملSmall-parallel exemplar-based voice conversion in noisy environments using affine non-negative matrix factorization
The need to have a large amount of parallel data is a large hurdle for the practical use of voice conversion (VC). This paper presents a novel framework of exemplar-based VC that only requires a small number of parallel exemplars. In our previous work, a VC technique using non-negative matrix factorization (NMF) for noisy environments was proposed. This method requires parallel exemplars (which...
متن کاملParallel Dictionary Learning for Voice Conversion Using Discriminative Graph-Embedded Non-Negative Matrix Factorization
This paper proposes a discriminative learning method for Nonnegative Matrix Factorization (NMF)-based Voice Conversion (VC). NMF-based VC has been researched because of the natural-sounding voice it produces compared with conventional Gaussian Mixture Model (GMM)-based VC. In conventional NMF-based VC, parallel exemplars are used as the dictionary; therefore, dictionary learning is not adopted....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Audio, Speech, and Music Processing
سال: 2015
ISSN: 1687-4722
DOI: 10.1186/s13636-015-0067-4